Return aggregation of PIP statistics
Usage
pip_group(
country = NULL,
year = NULL,
povline = 2.15,
popshare = NULL,
group_by = c("wb", "none"),
fill_gaps = FALSE,
welfare_type = c("all", "consumption", "income"),
reporting_level = c("all", "national", "rural", "urban"),
additional_ind = FALSE,
release_version = NULL,
ppp_version = NULL,
version = NULL
)
Arguments
- country
character()
countries for which statistics are to be computed, specified as ISO3 codes. DefaultNULL
.- year
character()
|numeric()
year(s) for which statistics are to be computed, specified as YYYY. DefaultNULL
.- povline
numeric(1)
poverty line to be used to compute poverty mesures. Poverty lines are only accepted up to 3 decimals. Default2.15
.numeric(1)
proportion of the population living below the poverty line. Will be ignored if povline is specified. DefaultNULL
.- group_by
character(1)
aggregate results by pre-defined sub-groups. Default"wb"
.- fill_gaps
logical(1)
whether to fill gaps in the data. DefaultFALSE
.- welfare_type
character(1)
type of welfare measure to be used. Default"all"
.- reporting_level
character(1)
level of reporting for the statistics. Default"all"
.- additional_ind
logical(1)
whether to include additional indicators. DefaultFALSE
.- release_version
character(1)
version of the data release in YYYYMMDD format. DefaultNULL
.- ppp_version
character(1)
|numeric(1)
version of the data. DefaultNULL
.- version
character(1)
version of the data. DefaultNULL
.
Value
A data.frame()
with the requested statistics.
See also
Other poverty and inequality statistics:
pip_aux()
,
pip_citation()
,
pip_data()
,
pip_health_check()
,
pip_info()
,
pip_valid_params()
,
pip_versions()
Examples
# \donttest{
pip_group(c("AFE", "LAC"))
#> # A tibble: 88 × 14
#> region_name region_code reporting_year poverty_line headcount poverty_gap
#> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 Eastern and So… AFE 1981 2.15 0.520 0.221
#> 2 Eastern and So… AFE 1982 2.15 0.524 0.225
#> 3 Eastern and So… AFE 1983 2.15 0.529 0.229
#> 4 Eastern and So… AFE 1984 2.15 0.539 0.235
#> 5 Eastern and So… AFE 1985 2.15 0.547 0.240
#> 6 Eastern and So… AFE 1986 2.15 0.540 0.235
#> 7 Eastern and So… AFE 1987 2.15 0.533 0.230
#> 8 Eastern and So… AFE 1988 2.15 0.533 0.229
#> 9 Eastern and So… AFE 1989 2.15 0.533 0.230
#> 10 Eastern and So… AFE 1990 2.15 0.542 0.236
#> # ℹ 78 more rows
#> # ℹ 8 more variables: poverty_severity <dbl>, watts <dbl>, mean <dbl>,
#> # spr <dbl>, pg <dbl>, estimate_type <chr>, reporting_pop <int>,
#> # pop_in_poverty <int>
# }