Skip to contents

Return aggregation of PIP statistics

Usage

pip_group(
  country = NULL,
  year = NULL,
  povline = 2.15,
  popshare = NULL,
  group_by = c("wb", "none"),
  fill_gaps = FALSE,
  welfare_type = c("all", "consumption", "income"),
  reporting_level = c("all", "national", "rural", "urban"),
  additional_ind = FALSE,
  release_version = NULL,
  ppp_version = NULL,
  version = NULL
)

Arguments

country

(NULL | character())
Countries for which statistics are to be computed, specified as ISO3 codes. Default NULL.

year

(NULL | character() | numeric())
Years for which statistics are to be computed, specified as YYYY. Default NULL.

povline

(numeric(1))
Poverty line to be used to compute poverty mesures. Poverty lines are only accepted up to 3 decimals. Default 2.15.

popshare

(NULL | numeric(1))
Proportion of the population living below the poverty line. Will be ignored if povline is specified. Default NULL.

group_by

(character(1))
Aggregate results by pre-defined sub-groups. Default "wb".

fill_gaps

(logical(1))
Whether to fill gaps in the data. Default FALSE.

welfare_type

(character(1))
Type of welfare measure to be used. Default "all".

reporting_level

(character(1))
level of reporting for the statistics. Default "all".

additional_ind

(logical(1))
Whether to include additional indicators. Default FALSE.

release_version

(NULL | character(1))
Version of the data release in YYYYMMDD format. Default NULL.

ppp_version

(NULL | character(1) | numeric(1))
Version of the data. Default NULL.

version

(NULL | character(1))
Version of the data. Default NULL.

Value

A data.frame() with the requested statistics.

See also

Other poverty and inequality statistics: pip_aux(), pip_citation(), pip_data(), pip_health_check(), pip_info(), pip_valid_params(), pip_versions()

Examples

# \donttest{
grp <- pip_group(c("AFE", "LAC"))
head(grp)
#>   region_code                 region_name reporting_year poverty_line
#> 1         AFE Eastern and Southern Africa           1981         2.15
#> 2         AFE Eastern and Southern Africa           1982         2.15
#> 3         AFE Eastern and Southern Africa           1983         2.15
#> 4         AFE Eastern and Southern Africa           1984         2.15
#> 5         AFE Eastern and Southern Africa           1985         2.15
#> 6         AFE Eastern and Southern Africa           1986         2.15
#>   reporting_pop headcount poverty_gap poverty_severity     watts     mean
#> 1     238043099 0.4492083   0.1803997       0.09601325 0.2722807 4.619360
#> 2     245822010 0.4529343   0.1833830       0.09819924 0.2779890 4.564284
#> 3     253644643 0.4610710   0.1896440       0.10284057 0.2899867 4.484208
#> 4     261458202 0.4703555   0.1946693       0.10592007 0.2984553 4.428993
#> 5     269450407 0.4784858   0.1985664       0.10813684 0.3044911 4.361782
#> 6     277621771 0.4719630   0.1955368       0.10656889 0.3002257 4.387970
#>         spr       pg pop_in_poverty estimate_type
#> 1 0.6201860 16.38193      106930938    projection
#> 2 0.6222819 16.60451      111341217    projection
#> 3 0.6273366 17.05600      116948178    projection
#> 4 0.6352423 17.39656      122978305    projection
#> 5 0.6408700 17.62245      128928190    projection
#> 6 0.6360868 17.47769      131027214    projection
# }