Return aggregation of PIP statistics
Usage
pip_group(
country = NULL,
year = NULL,
povline = 2.15,
popshare = NULL,
group_by = c("wb", "none"),
fill_gaps = FALSE,
welfare_type = c("all", "consumption", "income"),
reporting_level = c("all", "national", "rural", "urban"),
additional_ind = FALSE,
release_version = NULL,
ppp_version = NULL,
version = NULL
)Arguments
- country
(
NULL|character())
Countries for which statistics are to be computed, specified as ISO3 codes. DefaultNULL.- year
(
NULL|character()|numeric())
Years for which statistics are to be computed, specified as YYYY. DefaultNULL.- povline
(
numeric(1))
Poverty line to be used to compute poverty mesures. Poverty lines are only accepted up to 3 decimals. Default2.15.(
NULL|numeric(1))
Proportion of the population living below the poverty line. Will be ignored if povline is specified. DefaultNULL.- group_by
(
character(1))
Aggregate results by pre-defined sub-groups. Default"wb".- fill_gaps
(
logical(1))
Whether to fill gaps in the data. DefaultFALSE.- welfare_type
(
character(1))
Type of welfare measure to be used. Default"all".- reporting_level
(
character(1))
level of reporting for the statistics. Default"all".- additional_ind
(
logical(1))
Whether to include additional indicators. DefaultFALSE.- release_version
(
NULL|character(1))
Version of the data release in YYYYMMDD format. DefaultNULL.- ppp_version
(
NULL|character(1)|numeric(1))
Version of the data. DefaultNULL.- version
(
NULL|character(1))
Version of the data. DefaultNULL.
Value
A data.frame() with the requested statistics.
See also
Other poverty and inequality statistics:
pip_aux(),
pip_citation(),
pip_data(),
pip_health_check(),
pip_info(),
pip_valid_params(),
pip_versions()
Examples
# \donttest{
grp <- pip_group(c("AFE", "LAC"))
head(grp)
#> region_code region_name reporting_year poverty_line
#> 1 AFE Eastern and Southern Africa 1981 2.15
#> 2 AFE Eastern and Southern Africa 1982 2.15
#> 3 AFE Eastern and Southern Africa 1983 2.15
#> 4 AFE Eastern and Southern Africa 1984 2.15
#> 5 AFE Eastern and Southern Africa 1985 2.15
#> 6 AFE Eastern and Southern Africa 1986 2.15
#> reporting_pop headcount poverty_gap poverty_severity watts mean
#> 1 238043099 0.4492083 0.1803997 0.09601325 0.2722807 4.619360
#> 2 245822010 0.4529343 0.1833830 0.09819924 0.2779890 4.564284
#> 3 253644643 0.4610710 0.1896440 0.10284057 0.2899867 4.484208
#> 4 261458202 0.4703555 0.1946693 0.10592007 0.2984553 4.428993
#> 5 269450407 0.4784858 0.1985664 0.10813684 0.3044911 4.361782
#> 6 277621771 0.4719630 0.1955368 0.10656889 0.3002257 4.387970
#> spr pg pop_in_poverty estimate_type
#> 1 0.6201860 16.38193 106930938 projection
#> 2 0.6222819 16.60451 111341217 projection
#> 3 0.6273366 17.05600 116948178 projection
#> 4 0.6352423 17.39656 122978305 projection
#> 5 0.6408700 17.62245 128928190 projection
#> 6 0.6360868 17.47769 131027214 projection
# }